Blog Archive

Thursday, 26 August 2004

IP Address Subnets and Classes

Here's a table showing the relationship between the / notation, the byte

notation, and the corresponding binary numbers (with a dot every eight

digits) for the 32 bit addresses. I've thrown in a count of how many

Class A/B/C networks the larger networks encompass.



/ Notation Binary Byte Notation #Class

---------- ----------------------------------- -------------- ------

/0 00000000.00000000.00000000.00000000 0.0.0.0 256 A

/1 10000000.00000000.00000000.00000000 128.0.0.0 128 A

/2 11000000.00000000.00000000.00000000 192.0.0.0 64 A

/3 11100000.00000000.00000000.00000000 224.0.0.0 32 A

/4 11110000.00000000.00000000.00000000 240.0.0.0 16 A

/5 11111000.00000000.00000000.00000000 248.0.0.0 8 A

/6 11111100.00000000.00000000.00000000 252.0.0.0 4 A

/7 11111110.00000000.00000000.00000000 254.0.0.0 2 A

/8 11111111.00000000.00000000.00000000 255.0.0.0 1 A

/9 11111111.10000000.00000000.00000000 255.128.0.0 128 B

/10 11111111.11000000.00000000.00000000 255.192.0.0 64 B

/11 11111111.11100000.00000000.00000000 255.224.0.0 32 B

/12 11111111.11110000.00000000.00000000 255.240.0.0 16 B

/13 11111111.11111000.00000000.00000000 255.248.0.0 8 B

/14 11111111.11111100.00000000.00000000 255.252.0.0 4 B

/15 11111111.11111110.00000000.00000000 255.254.0.0 2 B

/16 11111111.11111111.00000000.00000000 255.255.0.0 1 B

/17 11111111.11111111.10000000.00000000 255.255.128.0 128 C

/18 11111111.11111111.11000000.00000000 255.255.192.0 64 C

/19 11111111.11111111.11100000.00000000 255.255.224.0 32 C

/20 11111111.11111111.11110000.00000000 255.255.240.0 16 C

/21 11111111.11111111.11111000.00000000 255.255.248.0 8 C

/22 11111111.11111111.11111100.00000000 255.255.252.0 4 C

/23 11111111.11111111.11111110.00000000 255.255.254.0 2 C

/24 11111111.11111111.11111111.00000000 255.255.255.0 1 C

/25 11111111.11111111.11111111.10000000 255.255.255.128

/26 11111111.11111111.11111111.11000000 255.255.255.192

/27 11111111.11111111.11111111.11100000 255.255.255.224

/28 11111111.11111111.11111111.11110000 255.255.255.240

/29 11111111.11111111.11111111.11111000 255.255.255.248

/30 11111111.11111111.11111111.11111100 255.255.255.252

/31 11111111.11111111.11111111.11111110 255.255.255.254

/32 11111111.11111111.11111111.11111111 255.255.255.255




Here's an example of how to get from the binary number 11000000 to

the decimal number (192).



11000000 => 128*1 + 64*1 + 32*0 + 16*0 + 8*0 + 4*0 + 2*0 + 1*0

= 128 + 64 + 0 + 0 + 0 + 0 + 0 + 0

= 128 + 64

= 192



Another example (using an arbitrarily chosen binary number):



10000100 => 128*1 + 64*0 + 32*0 + 16*0 + 8*0 + 4*1 + 2*0 + 1*0

= 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0

= 128 + 4

= 132